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Abstract. A linear analysis of the combined effect of viscosity, finite ion Larmor radius and suspended par-
ticles on Kelvin-Helmholtz instability of two superposed incompressible fluids in the presence of a uniform
magnetic field is carried out. The magnetic field is assumed to be transverse to the direction of streaming.
A general dispersion relation for such a configuration has been obtained using appropriate boundary con-
ditions. The stability analysis is discussed analytically, and the obtained results are numerically confirmed.
Some special cases are recovered and corrected. The limiting cases of absence of suspended particles (or
fluid velocities) and finite Larmor radius, absence of suspended particles are discussed in detail. In both
cases, all other physical parameters are found to have stabilizing as well as destabilizing effects on the
considered system. In the former case, the kinematic viscosity is found to has a stabilizing effect, while in
the later case, the finite Larmor radius is found to has a stabilizing influence for a vortex sheet. It is shown
also that both finite Larmor radius and kinematic viscosity stabilizations for interchange perturbations are
similar to the stabilization effect due to a magnetic field for non-interchange perturbations.

PACS. 47.20.-k Hydrodynamic stability – 47.20.Gv Viscous instability – 47.15.Pn Laminar suspensions

1 Introduction

Kelvin-Helmholtz instability arises when the layers of flu-
ids slipping past each other have relative motion. Most
of the authors have studied the hydromagnetic Kelvin-
Helmholtz instability in plasmas with a view to analyze
the instability of the interface or the tangential discon-
tinuity between the two relatively moving plasma layers.
Chandrasekhar [1] has given a comprehensive survey of the
hydromagnetic version of this instability. He has treated
the problem considering a uniform magnetic field along
and transverse to the direction of streaming, and found
that the magnetic field in the direction of streaming has
a stabilizing influence of the Kelvin-Helmholtz instability;
whereas it does not affect the stability in the transverse di-
rection. An excellent review of the Kelvin-Helmholtz has
been presented by Gerwin [2]. It is well-known that in
the absence of a magnetic field, a velocity discontinuity
at a plane interface between two inviscid, incompressible
fluids is always unstable for any value, however, small of
the relative velocity. If, however, the fluids are perfectly
conducting, then a velocity discontinuity can be stabilized
by introducing a uniform magnetic field [3–5]. The study
of the Kelvin-Helmholtz instability is of much importance
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for the understanding of a variety of astrophysical phe-
nomenon with plasma flow, such as the physics of the so-
lar atmosphere, the stripping of gas from the clusters of
moving galaxies, the structure of the tail of comets, and
the interaction between the solar wind and the planetary
magnetospheres and ionospheres [6,7].

In the investigation of the hydromagnetic Kelvin-
Helmholtz instability problem, many authors used hydro-
magnetic equations which assume that the Larmor radii
of the charged particles (electrons and protons) are ef-
fectively zero. In several situations of astrophysical in-
terest such as in interstellar and interplanetary plasmas,
the approximation of zero Larmor radius in not valid,
and it is also not realistic in a number of physical situ-
ations. It is known that the finite ion Larmor radius cor-
rection is important in many plasma and astrophysical
situations [8–19]. The theory of finite Larmor radius sta-
bilization of ideal magnetohydrodynamic modes has been
developed over many years. The stability influence of fi-
nite Larmor radius corrections on plasma instabilities has
been demonstrated by Rosenbluth et al. [20], Roberts and
Taylor [21], Furth [22], Jukes [23] and many others. The
problem of Kelvin-Helmholtz instability of a compress-
ible as well as an incompressible plasma has been studied
by Nagano [24] to include finite Larmor radius effect. He
has also investigated the influence of finite Larmor radius
on the Kelvin-Helmholtz instability of the magnetopause,
and discussed the results in comparison with experimental
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observations. The finite Larmor radius effect on the insta-
bility of incompressible infinitely conducting superposed
fluids has been considered by Karla [25]. He has shown
that the finite Larmor radius stabilizes perturbations for
all wavenumbers. The hydromagnetic Kelvin-Helmholtz
and Rayleigh-Taylor instabilities with finite Larmor ra-
dius is also of interest in a variety of space, astrophysical
and geophysical situations, and have been recently inves-
tigated for physical models involving plasma flows [26–28],
thermal effects [29–37], and self-gravitating media [38–42],
and references cited therein.

From the discussion of various stability problems which
are relevant to certain astrophysical situations, the effect
of suspended particles is widely considered as it has been
observed that interstellar medium contain grains which
are small particles formed in the outer atmosphere of stars
and ejected into the medium. The effect of suspended par-
ticles on hydrodynamic stability problems is widely con-
sidered by many authors. Saffman [43] has studied in de-
tail a dusty gas in magnetohydrodynamics. Scanlon and
Segel [44] have made a thorough study of the implifi-
cations of suspended particles in hydromagnetics in the
context of the Bénard convection problem. Sanghvi and
Chhajlani [45] have incorporated the finite resistivity ef-
fect on the Rayleigh-Taylor configuration of a stratified
plasma in the presence of suspended particles, and found
that the particles have stabilizing as well as destabiliz-
ing influence under certain conditions. Palaniswamy and
Purushotham [46] have studied the effect of shear flow of
stratified fluids with fine dust and found that the effects
of fine dust to increase the region of instability. For recent
works about fluid-particle flows, see references [47–50]. On
the other hand, the multiphase fluid systems are concerned
with the motion of a liquid or gas containing immiscible
inert identical particles. Of all multiphase fluid systems
observed in nature, blood flows in arteries, flows in rocket
tubes, dust in gas cooling systems to enhance heat trans-
fer processes, movement of inert solid particles in atmo-
sphere, sand or other particles in sea or ocean beaches
are the most common examples of multiphase fluid sys-
tems [51]. For an excellent review about the subject, see
the paper of Maury and Glowinski [52].

From the above discussion, it is obvious that the in-
clusion of suspended particles in the instability problem,
together with the finite Larmor radius corrections, is of
interest because of its relevance to certain astrophysical
contexts [53–55]. Therefore, in the present study, we have
incorporated finite ion Larmor radius and viscosity cor-
rections in the Kelvin-Helmholtz configuration of two su-
perposed streaming fluids acted upon by a uniform mag-
netic field transverse to the direction of streaming in the
presence of suspended particles. We have discussed some
interesting implifications of the finite Larmor radius cor-
rections, viscosity, and suspended particles.

2 Formulation of the problem

We consider a model of two semi-infinite homogeneous
viscous fluids separated by a plane interface at z = 0.

Each of these regions z < 0 and z > 0, denoted by the
subscripts 1 and 2, are permeated by a homogeneous dis-
tribution of suspended particles of the same density. Thus
the medium can be regarded as a uniform mixture of gas
and suspended particles. The gas is considered infinitely
conducting and incompressible, while the particles are as-
sumed to be non-conducting. Let the mixture of the hydro-
magnetic fluid and the suspended particles stream with ve-
locity U(0, U, 0) in a transverse magnetic field H(H, 0, 0)
which is essentially uniform, and it is acted upon by a
downward gravitational field g(0, 0,−g).

In order to bring out the essential features of the prob-
lem, we shall make certain simplifying assumptions about
the motion of the suspended particles. We assume that
the particles are uniform in size and spherical in shape.
Let v and N denote the velocity and the number density
of the particles, respectively. It is supposed also that the
bulk concentration of the particles is very small so that
the net effect of the particles on the gas is equivalent to
an extra body force KN(v − U), where K is a constant
given by K = 6πaµ (Stokes drag formula), a being the
particle radius, and µ is the viscosity of the clean gas.

Thus the relevant equations of motion and continuity
of the hydromagnetic viscous fluid are

ρ

[
∂U
∂t

+ (U · ∇)U
]

= −∇p + ρg+µ∇2U −∇ · Π

+ KN(v − U) +
µe

4π
(∇× H) × H +

(
∂w

∂x
+

∂U
∂z

)
dµ

dz
(1)

∂ρ

∂t
+ ∇ · (ρU) = 0 (2)

where ρ and p denote the density and the pressure of the
gas, respectively, µe is the magnetic permeability which
is assumed to be constant, µ is the dynamic fluid viscos-
ity, and x = (x, y, z). The finite Larmor radius correction
has been incorporated through the stress tensor Π in the
equation of motion.

The incompressibility condition is

∇ · U = 0. (3)

Also, the Maxwell’s equations for a perfect conductor are

∂H
∂t

= (H · ∇)U−(U · ∇)H (4)

∇ ·H = 0. (5)

The force exerts by the gas on the particles is equal and
opposite to the force exerted by the particles on the gas.
The buoyancy force on the particles is neglected, as its sta-
bilizing effect is extremely small. Inter-particle distances
are assumed to be very large as compared to the diameter
of the particles, and so the inter-particle reactions can be
ignored. Under these restrictions, the equations of motion
and continuity for the particles are

mN

[
∂v
∂t

+ (v · ∇)v
]

= KN(U− v) (6)
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and

∂N

∂t
+ ∇ · (Nv) = 0 (7)

where mN is the mass of the particles per unit volume.

3 Perturbation equations

To investigate the stability of this system, we assume the
following perturbations in various physical quantities

U = U0 + u′, v = v0 + v′,

N = N0 + N ′, H = H0 + h,

p = p0 + δp, and ρ = ρ0 + δρ (8)

where the quantities with the subscript 0 denote equi-
librium values, and the quantities u′(u, v, w), v′, N ′,
h(hx, hy, hz), δp, and δρ denote the perturbations in the
gas velocity, the velocity of the particles, number density
of the particles, magnetic field, fluid pressure, and the den-
sity of the gas, respectively.

Substituting equation (8) into equations (1–7), and ne-
glecting the second and higher order terms with respect
to small fluctuations, we obtain the following set of lin-
earized equations for the considered system, after drop-
ping the subscript 0 from the equilibrium quantities, and
the primes from the perturbations quantities

ρ

[
∂u
∂t

+ (U · ∇)u
]

= −∇δp + gδρ+µ∇2u −∇ ·Π

+ KN(v − u) +
µe

4π
(∇× h) × H +

(
∂w

∂x
+

∂u
∂z

)
dµ

dz
(9)

[
1 + τ

(
∂

∂t
+ U · ∇

)]
v = u (10)

∂δρ

∂t
+ (U · ∇)δρ + (u · ∇)ρ = 0 (11)

∂h
∂t

+ (U · ∇)h = (H · ∇)u (12)

∇ · u = 0 (13)

and

∇ · h = 0 (14)

where τ = m/K denotes the relaxation time for the sus-
pended particles.

The stress tensor Π has the following components for
the horizontal magnetic field H(H, 0, 0) [56]

Πxx = 0

Πyy = −Πzz = −ρν0

(
∂w

∂y
+

∂v

∂z

)

Πxy = Πyx = −2ρν0

(
∂u

∂z

)

Πxz = Πzx = 2ρν0

(
∂u

∂y

)

Πzy = Πyz = ρν0

(
∂v

∂y
− ∂w

∂z

)
· (15)

The parameter ν0 has the dimension but not the exact
physical significance of a kinematic viscosity, and it is de-
fined by ν0 = R2

LΩL/4, where RL is the ion Larmor radius,
and ΩL is the ion gyrofrequency.

Let us look for solutions of the form

exp(iky + nt) (16)

where k is the wavenumber along the y-axis, and n is the
growth rate of the perturbation

On eliminating v from equation (9) with the help of
equation (10), and then employing equations (15, 16) on
equations (9–14), we obtain the following set of equations

ρ(n + ikU)
[
1 +

α0

{1 + τ(n + ikU)}
]

v = −ikδp

+ 2ν0(Dρ)(Dw) + ρν0(D2 − k2)w

+ µ(D2 − k2)v + (ikw + Dv)Dµ (17)

ρ(n + ikU)
[
1 +

α0

{1 + τ(n + ikU)}
]

w = −Dδp − gδρ

− ν0(Dρ)(Dv) − ρν0(D2 − k2)v − ikν0(Dρ)w

+ µ(D2 − k2)w + 2(Dµ)Dw (18)

(n + ikU)δρ = −wDρ (19)

ikv + Dw = 0 (20)

ikhy + Dhz = 0 (21)

where α0 = mN/ρ denotes the mass concentration of the
particles, and D = d/dz.

Equations (17, 18) can be solved using equa-
tions (19−21) to obtain the following differential equation
governing the perturbed velocity component w

(n + ikU)
[
1 +

α0

{1 + τ(n + ikU)}
] [

D (ρDw) − k2ρw
]

+ 2iν0k
[
D (Dρ Dw) − k2 (Dρ)w

]
+

gk2w(Dρ)
(n + ikU)

− [
D

{
µ(D2 − k2)Dw

} − k2µ(D2 − k2)w
]

− [
D

{
(Dµ(D2 + k2)w

} − 2k2(Dµ)(Dw)
]

= 0. (22)
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It should be noted here that the density of the suspended
particles in the two regions z < 0 and z > 0 (denoted by
the subscripts 1 and 2) is assumed to be the same.

4 The characteristic equation

We consider the case of two superposed viscous fluids
of densities ρ1 (z < 0) and ρ2 (z > 0), kinematic vis-
cosities ν1 and ν2 separated bt a horizontal boundary at
z = 0. Let the velocities of streaming of the two fluids
be U1(0, U1, 0) and U2(0, U2, 0). Thus in the regions of
constant µ and ρ, the differential equation (22) becomes

(D2 − k2)(D2 − q2
j )wj = 0, j = 1, 2 (23)

where

q2
j = k2 +

(n + ikUj)
νj

[
1 +

αj

{1 + τ(n + ikU)}
]
· (24)

Since w must be vanish both when z → −∞ (in the lower
fluid) and z → ∞ (in the upper fluid), then the general
solution of equation (23) in the two regions can be writ-
ten as

wj = [Aj exp(±kz) + Bj exp(±qjz)] (n + ikUj)
j = 1, 2 (25)

where A1, B1, A2, and B2 are constants of integration.
Note that, in writing the solutions (25), it is assumed such
that q1 and q2 are so defined that their real parts are
positive.

The solutions (25) must satisfy certain boundary con-
ditions. The boundary conditions to be satisfied at the
interface z = 0 are

w1

σ1
=

w2

σ2
at z = 0 (26)

D

(
w1

σ1

)
= D

(
w2

σ2

)
at z = 0 (27)

µ1(D2 + k2)
(

w1

σ1

)
= µ2(D2 + k2)

(
w2

σ2

)
at z = 0

(28)

where σj = (n + ikUj), j = 1, 2. Also integrating equa-
tion (22) across the interface z = 0, we obtain another
boundary condition

∆0

{
ρ(n + ikU)Dw

[
1 +

α0

{1 + τ(n + ikU)}
]}

−∆0[µ(D2−k2)Dw]−2iν0k
3∆0[ρ(n+ikU)]

(
w

n + ikU

)
0

+ gk2∆0(ρ)
(

w

n + ikU

)
0

+ 2k2∆0[µ(n + ikU)]

×
(

Dw

n + ikU

)
0

= 0 at z = 0 (29)

where ∆0 denotes the jump of a quantity experiences at
the interface z = 0; w0 and Dw0 are the common values
of w1, w2, and Dw1, Dw2, respectively, at z = 0.

Applying the boundary conditions (26–29) to the so-
lutions (25), we obtain

A1 + B1 = A2 + B2 (30)

kA1 + q1B1 = −kA2 − q2B2 (31)

β1ν1

[
2k2A1 + (q2

1 + k2)B1

]
= β2ν2

× [
2k2A2 + (q2

2 + k2)B2

]
(32)

and{
β1σ

2
1

[
1 +

α1

(1 + τσ1)

]
+ iν0k

2(β2σ2 − β1σ1)

+ k2(β1ν1σ1 − β2ν2σ2) +
gk

2
(β1 − β2)

}
A1 +

{
q1β1σ

2
1

k

×
[
1 +

α1

(1 + τσ1)

]
+ iν0k

2(β2σ2 − β1σ1) = q1k(β1ν1σ1

− β2ν2σ2) − (q1β1ν1σ1/k)(q2
1 − k2) +

gk

2
(β1 − β2)

}
B1

+
{

β2σ
2
2

[
1 +

α2

(1 + τσ2)

]
+ iν0k

2(β2σ2 − β1σ1)

−k2(β1ν1σ1 − β2ν2σ2) +
gk

2
(β1 − β2)

}
A2

+
{

q2β2σ
2
2

k

[
1 +

α2

(1 + τσ2)

]
+ iν0k

2(β2σ2 − β1σ1)

= q2k(β1ν1σ1 − β2ν2σ2) − (q2β2ν2σ2/k)
(
q2
2 − k2

)
+

gk

2
(β1 − β2)

}
B2 = 0 (33)

where we have written

αj =
mN

ρj
and βj =

ρj

(ρ1 + ρ2)
, j = 1, 2. (34)

Eliminating A1, B1, A2, and B2 from equations (30–33),
we obtain∣∣∣∣∣∣∣

1 1 − 1 − 1
k q1 k q2

2k2β1ν1 β1ν1(q2
1 + k2) −2k2β2ν2 −β2ν2(q2

2 + k2)
a1 b1 a2 b2

∣∣∣∣∣∣∣ = 0

(35)
where

aj = βjσ
2
j

[
1 +

αj

(1 + τσj)

]
+ iν0k

2(β2σ2 − β1σ1)

± k2(β1ν1σ1 − β2ν2σ2) +
gk

2
(β1 − β2) (36)

bj =
qjβjσ

2
j

k

[
1 +

αj

(1 + τσj)

]
+ iν0k

2(β2σ2 − β1σ1)

±qjk(β1ν1σ1−β2ν2σ2)− qjβjνjσj

k
(q2

j −k2)+
gk

2
(β1−β2).

(37)
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The determinant (35) can be reduced by subtracting the
first column from the second, the third column from the
fourth, and adding the first column to the third. By this
procedure, we obtain

∣∣∣∣∣∣∣
q1 − k 2k q2 − k

β1ν1(q2
1 − k2) 2k2(β1ν1 − β2ν2) −β2ν2(q2

2 − k2)

b1 − a1 a1 + a2 b2 − a2

∣∣∣∣∣∣∣ = 0.

(38)
Evaluating the determinant (38), we obtain the follow-
ing characteristic equation for the composite gas particle
streaming viscous medium

− 2k

{
k(β1ν1 − β2ν2)(q1 − k) − β1σ1

[
1 +

α1

(1 + τσ1)

]}

×
{

β2σ
2
2

[
1 +

α2

(1 + τσ2)

]
+ k(q2 − k)(β1ν1σ1 − β2ν2σ2)

}

+ 2k

{
k(β1ν1 − β2ν2)(q2 − k) + β2σ2

[
1 +

α2

(1 + τσ2)

]}

×
{

β1σ
2
1

[
1 +

α1

(1 + τσ1)

]
− k(q1 − k)(β1ν1σ1 − β2ν2σ2)

}

+
{

β1σ1(q2 − k)
[
1 +

α1

(1 + τσ1)

]
+ β2σ2(q1 − k)

×
[
1 +

α2

(1 + τσ2)

]}{
β1σ

2
1

[
1 +

α1

(1 + τσ1)

]

+ 2iν0k
2(β2σ2 − β1σ1) + β2σ

2
2

×
[
1 +

α2

(1 + τσ2)

]
+ gk(β1 − β2)

}
= 0. (39)

The characteristic equation (39) represents the combined
influence of the kinematic viscosity, the suspended parti-
cles, and the finiteness of ion Larmor radius on the hydro-
magnetic Kelvin-Helmholtz instability of two superposed
viscous fluids.

5 Dispersion relation and discussion

The characteristic relation (39) is quite complicated as the
values of q1and q2 involve square roots. We therefore make
the assumption that the two fluids are highly viscous. Un-
der this assumption, equation (24) yields

qj = k +
σj

2νjk

[
1 +

αj

(1 + τσj)

]
, j = 1, 2 (40)

substituting the values of q1 − k and q1 − k from equa-
tion (40) in equation (39), and putting ν1 = ν2 = ν (the
case of equal kinematic viscosities, for mathematical sim-
plicity, as in Ref. [1]), we obtain the following dispersion

relation

τ2n4 + [2νk2τ2 + τ(2 + α1β1 + α2β2) + ikτ2{U1(1 + 2β1)

+ U2(1 + 2β2)}+ 2iν0k
2τ2(β2 − β1)]n3 + [1 + α1β1 + α2β2

+4νk2τ+2iνk3τ2{U1(1+β1)+U2(1+β2)}+ikτ{U1(1+4β1

+2α1β1+α2β2)+U2(1+4β2+α1β1+2α2β2)}−3k2τ2(β1U
2
1

+β2U
2
2 +U1U2)+4iν0k

2τ(β2−β1)+2ν0k
3τ2{U1(2β1−β2)

+U2(β1−2β2)}+τ2gk(β1−β2)]n2 +[2νk2 +2iνk3τ{U1(1

+ 2β1) + U2(1 + 2β2)} − 2νk4τ2(β1U
2
1 + β2U

2
2 + 2U1U2)

+ 2ik{β1U1(1 + α1) + β2U2(1 + α2)} − k2τ{β1U
2
1 (4 + α1)

+ β2U
2
2 (4 + α2)+ 2(1 + α1β1 + α2β2)U1U2}− ik3τ2{β1U

3
1

+ β2U
3
2 + 3β1U

2
1 U2 + 3β2U1U

2
2 } + 2iν0k

2(β2 − β1)

− 2ν0k
3τ{(β2 − 3β1)U1 + (3β2 − β1)U2} − 2ν0k

4τ2{2(β2

− β1)U1U2 + β2U
2
2 − β1U

2
1 }+ 2τgk(β1 − β2) + iτ2gk2(U1

+U2)(β1−β2)]n+[{2iνk3(β1U1+β2U2)−k2(β1U
2
1 +β2U

2
2 )

− 2ν0k
3(β2U2 − β1U1) + gk(β1 − β2)}{1 + ikτ(U1 + U2)

−k2τ2U1U2}−k2(α1β1U
2
1 +α2β2U

2
2 )− ik3τU1U2(α1β1U1

+ α2β2U2)] = 0. (41)

In the absence of viscosity (ν = 0). Equation (41) reduces
to the dispersion relation obtained earlier by Sanghvi and
Chhajlani [56] (except Sect. 5.2, in our limiting case of
vanishing of both finite Larmor radius and fluid veloci-
ties), and their results are therefore corrected and recov-
ered here. In the absence of viscosity and suspended parti-
cles (ν = 0, τ = 0, α1 = α2 = 0), this equation reduces to
the dispersion relation obtained by Singh and Hans [57].
Note that, the effect of suspended particles enters into the
dispersion relation (41) through two parameters αj and τ
measuring the mass concentration and the relaxation time
of the particles. We shall now discuss the following cases
of interest.

5.1 General configuration

In this subsection, we treat the configuration in the ab-
sence of suspended particles and finite Larmor radius
effect. The dispersion relation (41) for this case, on sub-
stituting (ν0 = 0, τ = 0, α1 = α2 = 0) reduces to

n2 + [2νk2 + 2ik(β1U1 + β2U2)]n + [gk(β1 − β2)

− k2(β1U
2
1 + β2U

2
2 ) + 2iνk2(β1U1 + β2U2)] = 0. (42)

The roots of equation (42) are given by

n = −[νk2 + ik(β1U1 + β2U2)]

± [
k2β1β2(U1 − U2)2 + ν2k4 − gk(β1 − β2)

]1/2
.
(43)



396 The European Physical Journal D

When β1 > β2 (stable Kelvin-Helmholtz case), we find
from equation (43) that the Kelvin-Helmholtz instability
is suppressed if

k2β1β2(U1 − U2)2 < gk(β1 − β2) (44)

or if [
k2β1β2(U1 − U2)2 + ν2k4

] ≤ gk(β1 − β2) (45)

since under the above restriction, equation (42) will not
allow any real positive root of n, which implies the stabil-
ity of the system. Note that the kinematic viscosity has
a stabilizing effect in this case, Thus we conclude that
the considered Kelvin-Helmholtz configuration is stabi-
lized for the wavenumbers determined by the inequali-
ties (44) or (45). Also we find that instability results for
all wavenumbers satisfying the condition

k2β1β2(U1 − U2)2 > gk(β1 − β2). (46)

From equations (44, 46), it follows that the system is sta-
ble or unstable according as

k2β1β2(U1 − U2)2 ≶ gk(β1 − β2) (47)

therefore, there exists a critical wavenumber kc given by

kc =
g(β1 − β2)

β1β2(U1 − U2)2
(48)

such that the system is stable when k < kc, and it is
otherwise unstable.

When β1 < β2 (unstable Kelvin-Helmholtz case), it is
easy to see from equation (43) that the Kelvin-Helmholtz
configuration remains always unstable as one of the roots
of equation (42) is complex with positive real part. It is
clear from the above analysis that interchange perturba-
tions remain unaffected by the presence of a magnetic
field.

It is elucidating to consider the case of two streaming
viscous fluids in the absence of gravitational force (g = 0),
for which we have

n = −[νk2 + ik(β1U1 + β2U2)]

± [
k2ββ2(U1 − U2)2 + ν2k4

]1/2
(49)

which means that the system is always unstable irrespec-
tive of the magnitude and direction of the streaming ve-
locities, or the viscosity of the fluid.

Consider now the case of non-streaming fluids (U1 =
U2 = 0) under gravity, one obtains from equation (43)

n = −νk2 ± [
ν2k4 − gk (β1 − β2)

]1/2
. (50)

When β1 > β2, we find from equation (50) that
the Rayleigh-Taylor instability is suppressed for all the
wavenumbers values. When β1 < β2, in this case, it is
easy also to see from equation (50) that the Rayleigh-
Taylor configuration remains always unstable, and that
the viscosity has a destabilizing effect in this case. Fi-
nally, note that in the absence of kinematic viscosity, then
equation (50) shows that the system is stable or unstable
according to β1 > β2 or β1 < β2, respectively.

5.2 Static configuration

In this subsection, we shall deal with the case of non-
streaming superposed hydromagnetic viscous fluids of dif-
ferent densities in the presence of suspended particles. In
order to discuss implification of the presence of particles,
we analyze the case for vanishing finite Larmor radius
(ν0 = 0, U1 = U2 = 0). In this case the dispersion equa-
tion (41) can be written as

τ2n4 + [2νk2τ2 + τ(2 + α1β1 + α2β2)]n3

+ [1 + α1β1 + α2β2 + 4νk2τ + τ2gk(β1 − β2)]n2

+ [2νk2 + 2τgk(β1 − β2)]n + gk(β1 − β2) = 0. (51)

Note that the dispersion relation (51) is different from
the dispersion relation (35) obtained earlier by Sanghvi
and Chhajlani [56] due to an error in algebra (see their
Eqs. (27, 35)). This error is corrected here, and we will
discuss the stability conditions in view of the corrected
dispersion relation (51). Introducing the relaxation fre-
quency parameter f(= 1/τ) of the suspended particles
and simplifying the above equation, we obtain

n4 + n3[2νk2 + f(2 + α′)] + n2[f2(1 + α′) + 4νk2f

+ gk(β1 − β2)] + 2n[νk2f2 + fgk(β1 − β2)]

+ f2gk(β1 − β2) = 0 (52)

where α′ = mN/(ρ1+ρ2). We can distinguish now between
the following two cases

(i) Clean configuration stable (β1 > β2), we find, using
a necessary condition of the Hurwitz criterion, that equa-
tion (52), which has all the coefficients are positive and
real, does not admit any real positive or complex root with
positive real part, implying the stability of the considered
system. Thus the stable configuration remains stable even
in the presence of suspended particles and fluid viscosity.
We must note here that this condition is necessary but
it is not a sufficient one for which positivity of Hurwitz’s
determinants has to be proved [58]. We may conclude that
the considered configuration is stable when β1 > β2.

(ii) Clean configuration unstable (β1 < β2), when the
upper fluid is heavier than the lower one, then equa-
tion (52) will necessarily possess one real positive root n0,
which leads to an instability of the system.

To examine the behaviour of the growth rate with in-
creasing relaxation frequency of the suspended particles,
we need to calculate dn0/df from equation (52), to give

dn0

df
= −[n3

0(2 + α′) + 2n2
0{f(1 + α′) + 2νk2}

+ 2n0{2νk2f + gk(β1 − β2)} + 2fgk(β1 − β2)][4n3
0

+ 3n2
0{2νk2 + f(2 + α′)} + 2n0{f2(1 + α′) + 4νk2f

+ gk(β1 − β2)} + 2{νk2f2 + fgk(β1 − β2)}]−1. (53)
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The growth rate turns out to be negative if the upper or
lower signs of the inequalities

n3
0(2 + α′) + 2n2

0{f(1 + α′) + 2νk2} + 4n0νk2f ≷
2gk(β2 − β1)(n0 + f) (54)

and

4n3
0 + 3n2

0{2νk2 + f(2 + α′)} + 2n0{f2(1 + α′) + 4νk2f}
+ 2νk2f2 ≷ 2gk(β2 − β1)(n0 + f) (55)

hold simultaneously. Therefore, we conclude that the
growth rate of the unstable Rayleigh-Taylor modes is
decreased with increasing relaxation frequency of the
suspended particles. This means, under the restric-
tions (54, 55), that the particles have stabilizing influence
on the configuration. Also, if the upper sign of inequal-
ity (54) and the lower sign of inequality (55), or vice versa
hold simultaneously, then the suspended particles have
destabilizing effect on the considered system in this case.

Similarly, the behaviour of the growth rate with in-
creasing kinematic viscosity can be obtained from equa-
tion (52), where

dn0

dν
= −2n0k

2(n0 + f)2[4n3
0 + 3n2

0{2νk2 + f(2 + α′)}

+ 2n0{f2(1 + α′) + 4νk2f + gk(β1 − β2)}
+ 2{νk2f2 + fgk(β1 − β2)}]−1 (56)

therefore, we conclude that the growth rate of the un-
stable Rayleigh-Taylor modes is decreased or increased
with increasing fluid viscosity if the denominator in equa-
tion (56) is positive or negative, respectively, i.e. if the
upper or lower sign of inequality (55) holds, respectively.
This means, under the restriction (55), that the fluid vis-
cosity has a stabilizing as well as a destabilizing effect on
the configuration.

The dispersion relation (52) can be written in di-
mensionless form by the substitutions n̂ = n/

√
gk, f̂ =

f/
√

gk, ν̂ = ν/(gk)3/2, and k̂ = k
√

gk. Thus we get

n̂4 + n̂3[2ν̂k̂2 + f̂(2 + α′)] + n̂2[f̂2(1 + α′) + 4ν̂k̂2f̂

+ (β1 − β2)] + 2n̂[ν̂k̂2f̂2 + f̂(β1 − β2)] + f̂2(β1 − β2) = 0
(57)

where α′ = KNτ/(ρ1 + ρ2).
As an illustration of both the implifications of sus-

pended particles and the fluid viscosity on the stabil-
ity of the Rayleigh-Taylor mode, we have numerically
solved equation (57) for positive real roots for various val-
ues of the non-dimensional parameters f̂ (or ν̂) and α′
(which characterize the influence of suspended particles).
Figures 1–3 clearly show that the growth rate n̂ (as a
function of the wavenumber k̂) decreases with increasing
each of relaxation frequency f̂ of the suspended particles,

Fig. 1. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for f̂ = 0.5, 1, and 10, with α′ = 0.5,
ν̂ = 0.8, β1 = 0.2, and β2 = 0.8.

Fig. 2. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for α′ = 0.6, 1.2, and 4, with f̂ = 5, ν̂ = 0.8,
β1 = 0.2, and β2 = 0.8.

Fig. 3. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for ν̂ = 0.5, 1, 3 and 10, with f̂ = 5, α′ = 3,
β1 = 0.2, and β2 = 0.8.

the density α′ of the particles as well as the fluid viscos-
ity ν̂, respectively, where we have kept β2 − β1 = 0.6 in
these figures. It may be remarked here that an increase of
f̂(= 6πµa/m) implies an increase in the size of the par-
ticles (a), as we have assumed µ and m to be constants.
Thus we conclude that the increasing of fluid viscosity, re-
laxation frequency of the particles (and their density) have
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stabilizing influences on the considered Rayleigh-Taylor
configuration. In other words, as the size of the particles
(of constant mass) increases, the growth rate of unstable
Rayleigh-Taylor modes decreases even in the presence of
fluid viscosity.

5.3 K-H instability including FLR and suspended
particles

To apprehend implifications of finite Larmor radius cor-
rections on the Kelvin-Helmholtz instability, we consider
two viscous streaming fluids in the presence of a uniform
magnetic field transverse to the direction of streaming, ne-
glecting the effect of particles. We assume the streaming
velocities of the two fluids to be U1 and U2, their densities
being equal. The general dispersion relation (41) in this
case becomes

n2 + [2νk2 + ik(U1 + U2)]n + [iνk3(U1 + U2)

+ ν0k
3(U1 − U2) − (k2/2)(U2

1 + U2
2 )] = 0. (58)

The solution of the above dispersion relation is

n = −1
2
[2νk2 + ik(U1 + U2)]

±
√

ν4k4 +
k2

4
(U1 − U2)2 − ν0k3(U1 − U2). (59)

If U1 > U2 (the lower fluid is streaming faster than the
upper fluid), the motion is stabilized or destabilized ac-
cording as

k ≷ (U1 − U2)
4ν0

(60)

respectively. Also, equation (59) shows that the medium is
stabilizes for wavenumbers determined by the inequality[

ν4k2 +
1
4
(U1 − U2)2

]
≤ ν0k(U1 − U2) (61)

i.e.

k ≤ (U1 − U2)
2ν2

[
ν0 +

√
ν2
0 − ν2

]
. (62)

Thus the medium is stable for wavenumbers k ≤ kc, where

kc =
(U1 − U2)

2ν2

[
ν0 +

√
ν2
0 − ν2

]
(63)

the kinematic viscosity is found to has a stabilizing effect
in this case.

Hence, we conclude that the finite Larmor radius tends
to stabilize the configuration and the critical wavenumber
depends upon the relative velocity of the two fluids. On the
contrary, if U1 < U2, the system is always unstable in this
case. Furthermore, if we solve the dispersion equation (58)
corresponding to fluids of equal densities and of streaming
velocities U and −U in the absence of suspended particles,
we obtain the relation

n2 + 2νk2n + k2U [2ν0k − U ] = 0. (64)

Fig. 4. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for ν̂0 = 0, 0.1, 0.3, and 0.5, with Û = 0.5,
and ν̂ = 0.6.

It corresponds to the Kelvin-Helmholtz model when there
is a tangential discontinuity in velocity in a uniform
plasma. This result, in the absence of viscosity, has been
obtained by Karla [25], and also by Nagano [24]. In this
case, we observe that the finite Larmor radius has a sta-
bilizing influence as it reduces the frequency of oscillation
of the system. The criterion for instability is

U > 2ν0k (65)

which yields the critical wavenumber

kc =
U

2ν0
· (66)

Here, we note that the finite Larmor radius effect stabilizes
the perturbations for k > kc. In comparing this result
with equation (62), we find that the critical wavenumbers
are different (or not) for fluids streaming with different
velocities (U1, U2), or with the speeds (U , 0) such that
ν = ν0, respectively.

Now we solve equation (64) numerically for positive
roots in order to illustrate the influence of finite Larmor
radius and fluid viscosity on the Kelvin-Helmholtz config-
uration. Note that we are analyzing interchange (k ⊥ H)
perturbations. To do this, we put equation (64) in the
non-dimensional form

n̂2 + 2ν̂k̂2n̂ + k̂2Û [2ν̂0k̂ − Û ] = 0 (67)

where we have introduced the non-dimensional parame-
ters n̂ = nL/V , k̂ = kL, Û = U/V , ν̂0 = ν0/V L, and
ν̂ = ν/V L, where V and L denote the Alfvén speed and
the characteristic length, respectively. Figure 4 shows the
variation of the growth rate n̂ (positive real part) as a
function of the wavenumber k̂ for different values of ν̂0,
taking Û = 0.5 (fixed). The upper curve where ν̂0 = 0
correspond to the case of ideal magnetohydrodynamics in
the presence of fluid viscosity. We notice that, for some
value of ν̂0, the growth rate first increases for small k̂,
attains a maximum but remains smaller than the usual
magnetohydrodynamic approximation, and therefore de-
creases and becomes zero for the corresponding critical
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Fig. 5. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for ν̂ = 0.5, 1.5, and 3, with Û = 0.5, and
ν̂0 = 0.4.

Fig. 6. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for Û = 0.8, 1.9, and 3, with ν̂ = 0.2, and
ν̂0 = 0.5.

wavenumber. The forgoing analysis indicates that inter-
change perturbations are stabilized by the finite Larmor
radius effect for k̂ > k̂c, where k̂c = Û/2ν̂0. Furthermore, it
is observed that as the finite Larmor radius increases, the
domain of instability is also reduces. Also, equation (67)
shows, in the absence of both ν̂ and ν̂0, that the growth
rate n̂ varies linearly with the wavenumber k̂ (i.e. n̂ in-
crease with increasing k̂), but when ν̂ �= 0, then he growth
rate n̂ varies nonlinearly with the wavenumber k̂ (i.e. n̂

increase with increasing k̂ and attains a maximum, after
which it decreases and becomes zero at k̂ = k̂c). This re-
sult shows the stabilizing effect of the fluid viscosity on
the considered system, and it is also confirmed by Fig-
ure 5, in the wavenumbers range 0 ≤ k̂ ≤ 0.6 (approxi-
mately). Figure 6 shows the variation of the growth rate
n̂ (positive real part) as a function of the wavenumber k̂

for different values of Û . We notice that the growth rate
first for small k̂, attains a maximum and therefore de-
creases and becomes zero for the corresponding critical
wavenumber k̂. It is also observed that, as the fluid ve-
locity increases, the domain of instability is also enlarged.
Thus, the fluid velocity has a destabilizing influence on
the considered system.

Finally, to study the combined influence of the finite
Larmor radius, kinematic viscosity, and suspended parti-
cles, we specialize the dispersion relation (41) when identi-
cal gas particle composite medium occupy the two regions
z < 0 and z > 0. The streaming velocities in the two
viscous regions are assumed to be U and −U , in the pres-
ence of a uniform magnetic field transverse to the direc-
tion of streaming. In this case we have to put the follow-
ing values in the dispersion relation (41): α1 = α2 = α0,
β1 = β2 = 1/2, U1 = U , and U2 = −U . Thus we obtain
the following dispersion relation

τ2n4+τ [2νk2τ+(2+α0)]n3+[1+α0+4νk2τ+2ν0k
3τ2U ]n2

+ {2νk2(1 + k2τ2U2) + k2τU2(α0 − 2) + 4ν0k
3τU}n

+ k2U [{2ν0k − U}{1 + k2τ2U2} − α0U ] = 0. (68)

The above dispersion relation, on writing f = 1/τ (the re-
laxation frequency parameter of the suspended particles)
becomes

n4 + [2νk2 + f(2 + α0)]n3

+ [f2(1 + α0) + 4νk2f + 2ν0k
3U ]n2

+ {2νk2(f2 + k2U2) + k2fU2(α0 − 2) + 4ν0k
3fU}n

+ k2U [{2ν0k − U}{f2 + k2U2} − α0f
2U ] = 0. (69)

The dispersion relation (69) enables us to examine the
transverse Kelvin-Helmholtz configuration in the presence
of finite Larmor radius effect, and suspended particles si-
multaneously. We calculate the derivative of the growth
rate of the unstable Kelvin-Helmholtz mode n0 with in-
creasing the finite Larmor radius ν0, and the kinematic
viscosity ν, respectively. From equation (69), we obtain

dn0

dν0
= −2k3U [n2

0 + n0f + f2 + k2U2]
4n3

0 + a1n2
0 + a2n0 + a3

(70)

dn0

dν
= −2n0k

2[(n0 + f)2 + k2U ]
4n3

0 + a1n2
0 + a2n0 + a3

(71)

where

a1 = 3[2νk2 + f(2 + α0)] (72)

a2 = 2[f2(1 + α0) + 4νk2f + 2ν0k
3U ] (73)

a3 = k2[2ν(f2 + k2U) + fU2(α0 − 2) + 4ν0kfU ]. (74)

The growth rate is negative if (α0 ≥ 2), or if

[2ν(f2 + k2U) + α0fU2 + 4ν0kfU ] > 2fU2 (75)

and it will be positive if

[4n3
0 + 3n2

0{2νk2 + f(2 + α0)} + 2n0{f2(1 + α0)

+ 4νk2f + 2ν0k
3U} + k2{2ν(f2 + k2U) + fU2(α0 − 2)

+ 4ν0kfU}] < 0. (76)



400 The European Physical Journal D

Fig. 7. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for ν̂ = 2, 4, and 10, with α0 = 0.8, Û = 0.7,
f̂ = 6, and ν̂0 = 0.5.

Note that the condition (75) is identical to the condi-
tion (65) when β1 > β2, under which we have shown a
stabilizing influence of both the suspended particles and
kinematic viscosity on the configuration. Thus we find
that the growth rate (dn0/dν0) and (dn0/dν) of unstable
modes of the considered system are reduced with the in-
crease of the finite Larmor radius (ν0), and kinematic vis-
cosity (ν), respectively, under the condition (75); whereas
it is enhanced with the increase of finite Larmor radius and
kinematic viscosity, respectively, if condition (76) is satis-
fied. In other words, the conditions (75, 76) define regions
where both the finite ion Larmor radius and the kinematic
viscosity have stabilizing or destabilizing influence on the
growth rate of the unstable mode. It is also seen from con-
ditions (75, 76) that they determining the regions involve
the parameters f and α0 of the suspended particles, finite
Larmor radius ν0, and kinematic viscosity ν. Note also,
from equations (70–75), that when α0 ≥ 2, then both the
suspended particles and kinematic viscosity have stabiliz-
ing effects on the considered system.

The dispersion relation (69) can be written in a di-
mensionless form in the same manner as equation (57),
and then by solving it numerically for positive real roots
for various values of the parameters ν̂, ν̂0, and f̂ , respec-
tively. Figure 7 shows the stabilizing influence of the fluid
viscosity in the wavenumber range 0 ≤ k̂ ≤ 1.2 (approx-
imately). Figure 8 shows also that the finite Larmor ra-
dius ν̂0 has a stabilizing effect on the considered system,
and that the domain of instability is reduced by increas-
ing ν̂0. In Figure 9, we notice that the relaxation frequency
of the suspended particles f̂ has a destabilizing influence
on the considered system composed of a uniform sheet
formed by the two superposed fluids.

To emphasize the role of finite Larmor radius on the
Kelvin-Helmholtz mode of two superposed hydromagnetic
fluids in the absence of suspended particles. It is known
that a magnetic field acting in the direction of stream-
ing has, in general, a stabilizing effect on the Kelvin-
Helmholtz configuration. A condition for stability of such
a model considering superposed fluids of equal densities
has been derived by Chandrasekhar [1], Shivamoggi [59]

Fig. 8. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for ν̂0 = 0.2, 0.5, and 0.8, with α0 = 0.8,
Û = 0.6, f̂ = 5, and ν̂ = 5.

Fig. 9. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for f̂ = 0.3, 1, and 20, with α0 = 0.7,
Û = 0.6, ν̂ = 4, and ν̂0 = 0.6.

among others, is given by

V ≥ U

2
(77)

where V represents Alfvén speed. It was also pointed out
by Chandrasekhar [1] that a uniform magnetic field trans-
verse to the direction of streaming does not contribute
to the development of Kelvin-Helmholtz instability. We
have incorporated the finite Larmor radius and kinematic
viscosity corrections in the Kelvin-Helmholtz model con-
sidering a uniform magnetic field acting transverse to the
direction of streaming. The criterion for stability of the
medium is given by equation (65) (when U1 = U , U2 = 0,
ν = ν0), i.e.

kν0 ≥ U

2
· (78)

On comparing equations (77, 78), we note that the quan-
tity kν0 in equation (78) replaced by the Alfvén speed
in equation (77). This indicates the finite Larmor radius
effect which arises due to the presence of the transverse
magnetic field stabilizes the Kelvin-Helmholtz system in
a similar manner as done by a magnetic field parallel to
the direction of streaming.
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5.4 Implifications of suspended particles
on the medium

In this subsection, we carry out the analysis with van-
ishing small finite Larmor radius (ν0 = 0) for investigat-
ing implifications of suspended particles in a more com-
plete manner. The dispersion relation (69) in this case of
zero Larmor radius (ν0 = 0, and when α1 = α2 = α0,
β1 = β2 = 1/2, U1 = U , and U2 = −U) reduces to

n4 + [2νk2 + f(2 + α0)]n3 + [4νk2f + f2(1 + α0)]n2

+ [2νk2(f2 + k2U2) + k2fU2(α0 − 2)]n

− [f2k2U2(1 + α0) + k4U4] = 0. (79)

Clearly the absolute term of the above equation is always
negative, which means that it admits at least one real
positive root. However, it is interesting to evaluate the
derivative of the growth rate of the unstable mode (n0) of
propagation with increasing relaxation frequency of the
suspended particles as well as the kinematic viscosity.
From equation (79), we find

dn0

df
= −[n3

0(2 + α0) + 2n2
0{2νk2 + f(1 + α0)}

+ n0{4νk2f − k2U2(2 − α0)} − 2fk2U2(1 + α0)][4n3
0

+ 3n2
0{2νk2 + f(2 + α0)} + 2n0f{4νk2 + f(1 + α0)}
+ {2νk2(f2 + k2U2) − fk2U2(2 − α0)}]−1 (80)

and

dn0

dν
= −2k2n0[(n0 + f)2 + k2U2][4n3

0 + 3n2
0{2νk2

+ f(2 + α0)} + 2n0f{4νk2 + f(1 + α0)} + {2νk2(f2

+ k2U2) − fk2U2(2 − α0)}]−1. (81)

In writing equation (79) we have considered the fact that
α0(= mN/ρ) ≤ 1. Let us now consider the inequalities

[n3
0(2 + α0) + 2n2

0{2νk2 + f(1 + α0)} + 4νn0k
2f ] ≷

k2U2[n0(2 − α0) + 2f(1 + α0)] (82)

and

[4n3
0 + 3n2

0{2νk2 + f(2 + α0)} + 2n0f{4νk2 + f(1 + α0)}
+ {2νk2(f2 + k2U2)] ≷ fk2U2(2 − α0). (83)

If both upper and lower signs of the inequalities (82, 83)
are simultaneously satisfied, we find that dn0/df is nega-
tive, and if the upper and lower signs of equations (82, 83)
or vice versa simultaneously hold, then dn0/df turns out
to be positive. From the above analysis, we find that in
the absence of finite Larmor radius, the suspended par-
ticles reduces as well as increases the growth rate of the
considered Kelvin-Helmholtz system. Also, we conclude
from equation (81). that the growth rate of the unstable

Fig. 10. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for α0 = 0.1, 0.5, and 1.2, with f̂ = 0.1,
Û = 0.6, and ν̂ = 0.8.

Fig. 11. The growth rate n̂ (multiplied by 100) plotted against

the wavenumber k̂ for Û = 0.4, 0.7, and 1, with f̂ = 0.1,
α̂ = 0.3, and ν̂ = 0.5.

Kelvin-Helmholtz modes in this case is decreased or in-
creased with increasing fluid viscosity if the denominator
in equation (81) is positive or negative, respectively; i.e.
if the upper or lower signs of the inequality (83) holds,
respectively. This means, under the restriction (83), that
the fluid viscosity has a stabilizing as well as a destabiliz-
ing effect on the considered configuration. Note also that
when α0 ≥ 2, then equation (81) shows that the kine-
matic viscosity has a stabilizing effect on the considered
system in this case. In the absence of both viscosity and
fluid velocities, a similar conclusion regarding the effect of
suspended particles has been given by Chhajlani et al. [60]
in the context of Rayleigh-Taylor instability of a stratified
plasma in the presence of a uniform horizontal magnetic
field.

Now, after writing equation (79) in a non-dimensional
form in the same manner as equation (57), and then by
solving it numerically for positive real roots of the growth
rate n̂, we can draw the positive real parts of n̂ against
the wavenumber k̂ for various values of the parameters α0

and Û , respectively, in the absence of finite Larmor ra-
dius effect (i.e. when ν̂0 = 0). Figures 10 and 11 show,
respectively, that the density of the suspended particles
α0 has usually a stabilizing influence on the considered
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system in this case, while the fluid velocity Û has a desta-
bilizing effect, for all wavenumber values, on the consid-
ered system in the absence of the finite Larmor radius ν̂0.

6 Concluding remarks

The problem of Kelvin-Helmholtz instability, considering
a uniform magnetic field along and transverse to the direc-
tion of streaming has been treated by Chandrasekhar [1].
He has noted that these two directions are profoundly
different with respect to the development of Kelvin-
Helmholtz instability. The magnetic field in the direction
of streaming has a stabilizing influence on the Kelvin-
Helmholtz instability, whereas it does not affect the sta-
bility in the transverse direction. In this regard, we have
made a linear analysis of the Kelvin-Helmholtz instabil-
ity of two superposed infinitely conducting and viscous
fluids consisting of a uniform mixture of a gas and sus-
pended particles in the presence of a uniform magnetic
field transverse to the direction of streaming, including fi-
nite ion Larmor radius. The stability analysis is discussed
analytically, and confirmed numerically, and the obtained
results can be summarized as follows.

(1) In the absence of both suspended particles and fi-
nite Larmor radius, it is found that the stable configura-
tion can be stabilized or destabilized under certain condi-
tion, and the kinematic viscosity has a stabilizing effect in
this case, while the unstable configuration remains always
unstable even in the presence of kinematic viscosity, and
interchange perturbations remains unaffected by the pres-
ence of the magnetic field. The limiting cases of absence of
gravitational field or fluid velocities are investigated too.
The system is found to be unstable in the absence of grav-
itational field, while the stable and unstable cases remains
stable and unstable, respectively, in the absence of fluid
velocities. In the later case, it is found also, for ideal fluids,
that the system is stable or unstable according as β1 ≷ β2,
respectively.

(2) In the absence of both fluid velocities and finite
Larmor radius, it is found that both relaxation frequency
of the suspended particles, and kinematic viscosity have
stabilizing as well as destabilizing influences on the con-
sidered system under certain conditions, It is found also,
as the size of the particles increases, that the growth rate
of unstable Rayleigh-Taylor modes decreases even in the
presence of fluid viscosity. The corresponding results in
the absence of suspended particles have been recently ob-
tained by Hoshoudy and El-Ansary [61].

(3) In the absence of suspended particles, and assum-
ing that the streaming fluids with different velocities have
equal densities, it is found, when the lower fluid is stream-
ing faster than the upper one, that the system is stable
or unstable under certain condition, while when the lower
fluid is streaming slower than the upper one, the system
is found to be usually unstable. For a vortex sheet, we
observed that the finite Larmor radius has a stabilizing
influence as it reduces the frequency of oscillation of the
system.

(4) In the case of combined effect of finite Larmor ra-
dius, viscosity, and suspended particles, when identical gas
particles composite medium (α0) occupy the two regions,
it is found, for a vortex sheet of equal densities, that both
finite Larmor radius, and fluid viscosity have stabilizing as
well as destabilizing effects under certain condition, and
that they usually have stabilizing effects when α0 ≥ 2. We
have observed also, in the absence of suspended particles,
that the finite Larmor radius (when U1 = U , U2 = 0,
and ν = ν0) has a stabilizing effect under the condition
kν0 ≥ U/2.

(5) Considering the last case in the limit of zero fi-
nite Larmor radius, it is found that both the relaxation
frequency of suspended particles, and the kinematic vis-
cosity have stabilizing as well as destabilizing effects under
certain conditions. Also the fluid viscosity is found to has
a stabilizing influence when α0 ≥ 2. The case of absence of
both fluid viscosity and streaming yields the known pre-
vious results in the context.

(6) Finally, we have noted that the finite Larmor ra-
dius in the case of transverse Kelvin-Helmholtz instabil-
ity plays a similar stabilizing role as the magnetic field
does for perturbations parallel to the direction of stream-
ing. Thus we conclude that a magnetic field transverse
to the direction of streaming does influence the Kelvin-
Helmholtz instability when the finite Larmor radius cor-
rections are included to the analysis. Therefore, we
assert that the finite Larmor radius stabilization for inter-
change perturbations (k ⊥ H) is similar to the stabiliza-
tion due to a magnetic field for non-interchange (k ‖ H)
perturbations.
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